B-TECH PROJECT REPORT ON X-RAY
IMAGES BONES SEGMENTATION AND
FRACTURE LOCATION

Under the Supervision
Of
Dr. Rachna Asthana, Professor, HOD,
Electronics Engineering Department,
HBTU, Kanpur

Submitted by:

Shivam Gupta (209/14)

Mayank Agrawal (195/14)

Ravi Mittal (203/14)

Mohd. Yasar Khalid Ansari(544/15)

1

CERTIFICATE

Certified that this is a progress record of the project entitled

“X-RAY IMAGES BONES SEGMENTATION AND FRACTURE LOCATION”

Done by “Shivam Gupta, Mayank Agrawal, Ravi Mittal, Mohd. Yasar Khalid Ansari “of the
V111 semester, Electronics Engineering in the year 2018 in partial fulfillment of the requirements
to the award of Degree of Bachelor of Technology in Electronics Engineering of Harcourt Butler

Technical University.

(Dr. RACHNA ASTHANA)
Professor
Electronics Engg. Department
HOD,HBTU, Kanpur
Project Supervisor

DECLARATION

We, Shivam Gupta, Mayank Agrawal, Ravi Mittal, Mohd. Yasar Khalid Ansari
studying in the final semester(8th) of Bachelor of Technology in Electronics Engineering at

Harcourt Butler Technical University, Kanpur, hereby declare that this project work entitled

“X-RAY IMAGES BONES SEGMENTATION AND FRACTURE LOCATION” which is being

submitted by us in the partial fulfillment for the award of the degree of Bachelor of Technology
in Electronics Engineering at Harcourt Butler Technical University, Kanpur is an authentic
record of our carried out during the academic year 2017-2018, under the guidance of Dr. Rachna
Asthana, Professor, Department of Electronics Engineering at Harcourt Butler Technical

University, Kanpur.

We further undertake that the matter embodied in the dissertation has not been submitted

previously for the award of any degree or diploma by us to any other university or institution.

Place: Kanpur

Shivam Gupta (209/14)

Mayank Agrawal (195/14)

Ravi Mittal (203/14)

Mohd. Yasar Khalid Ansari (544/15)

ACKNOWLEDGEMENT

We are thankful to our Project Guide Dr. Rachna Asthana (Professor, ET Dept.) Harcourt
Butler Technical University, Kanpur, for his valuable guidance, encouragement and co-operation
during the course of this project and its presentation. It was his guidance and support, which
resulted in the successful presentation of project within the specified time. Their unflinching help

and encouragement was a constant source of inspiration to us.

We are very graceful to Dr. Rachna Asthana (Professor, Head of Department, ET Dept.) and
Dr. Ashutosh Singh (Associate Professor,ET Dept.) For giving opportunity to us to present this
project. They took personal interest in project so that we could utilize our potential.

A Project owes its success from commencement to completion, to people involved with seminar
at various stages. We avail this opportunity to convey our sincere thanks to all the individuals
who have helped and assisted us in carrying and bringing out this seminar. Last but not the least,
the co-operation and help received from teachers and friends Dept. of ET is gratefully

acknowledged.

SHIVAM GUPTA (209/14)

MAYANK AGRAWAL (195/14)
RAVI MITTAL (203/14)

MOHD. YASAR KHALID ANSARI (544/15)

(Final B.Tech Electronics Eng.)

ABSTRACT

Image segmentation operation has a great importance in most medical imaging applications, by
extracting anatomical structures from medical images. There are many image segmentation
techniques available in the literature, each of them having advantages and disadvantages. The
extraction of bone contours from X-ray images has received a considerable amount of attention in
the literature recently, because they represent a vital step in the computer analysis of this kind of
images. The aim of X-ray segmentation is to subdivide the image in various portions, so that it can
help doctors during the study of the bone structure, for the detection of fractures in bones, or for
planning the treatment before surgery. The goal of this paper is to review the most important image
segmentation methods starting from a data base composed by real X-ray images. We will discuss
the principle and the mathematical model for each method, highlighting the strengths and
weaknesses. In this project We have tested on many images. We have applied different
Thresholding and morphological algorithms for the segmentation of the bones. We have used the
Hough Transform for the detection of the joints and then checking for the break-site is done for

the location of the fracture.

TABLE OF CONTENTS

CER T IR C AT E . .. e e 2
DECLARATION . .. e e 3
ACKNOWLEDGEMENT ..o e e 4
AB S T R A T . 5
IO 1 U3 o T L To] 5 1o) s W R 8
2. Medical Image Segmentation TEChNIQUES.oviniirii e 8
3. Classical Image Segmentation Techniques (Literature SUrVey).........cocveeeeiininnnnnn. 9
3L Thresholdingovii e, 9
3.2. Global MEtNOGS. 9
3.3. Adaptive MEthOdS. ..o 10
3.4. Region-Based Methods.coouiuiiii i 10
3.5. Region Growing AlgOrithms. e 10
3.6. Edge Detection Methods (Algorithms/Approach)..........ccooeiviiiiiiiiiiiiinnn.s 10
3.6.1. Prewitt Operator.viuiieit it 10
3.6.2. Sobel Operator (Mathematical Model)...............ccooiiiiiiiiiin.. 11
3.6.3. Laplacian or Gaussian Operator (Mathematical Model)...................... 11
3.7. Pattern Recognition Based Methods.c.oiiiiiiiiii e 12
4. MATLAB Implementation for X-ray Bone segmentation with Results........................13
5. MATLAB Implementation for Fracture Location with Results 21
5.1. Grey SCale CONVEISION.ouiit ittt e 22
5.2. Canny Edge DeteCtioNn.c.iirie i e 23
5.3. Morphological Operations.ouiuiiniirit e 25
5.4, HOUGh Transtorm 28

5.5. Locating Site of Breaks

5.6. Convolution OF IMAQES.ooviitii e e 31

5.7. Differences between Convolution IMages............coovvviiiiiiiiiiiieeeee, 32
5.8. Calculating and Drawing of Bounding EHipse................coooiiiiiiii, 32
5.9. Plotting Of ENlIPSE.voeiei e 34
6. Performance EValuation........ ..o 36
7. RESUIE ANAIYSIS. ... e 36
7.1. TPR, FPR and Precision Calculation...............ooooiiiiiiiiiiiceeee, 36
8. ConCluSION aNd FULUIE SCOPE. vttt ettt e e e 37
0. R O BN CES. ..ttt et e 38
10. APPENAIX(A,B,C) . e e 39-45

1. INTRODUCTION

Image segmentation operation has a great importance in most medical imaging applications, by
extracting anatomical structures from medical images [2]. There are many image segmentation
techniques available in the literature, each of them having advantages and disadvantages. The
extraction of bone contours from X-ray images has received a considerable amount of attention in
the literature recently, because they represent a vital step in the computer analysis of this kind of
images. The aim of X-ray segmentation is to subdivide the image in various portions, so that it can
help doctors during the study of the bone structure, for the detection of fractures in bones, or for
planning the treatment before surgery.

When analyzing objects in images, it is necessary to distinguish the objects of interest from the
background. This task can be realized through segmentation. Medical imaging began with the
discovery of Roentgen rays (X-Rays). Then, various image modalities have appeared over the
years, each with their own advantages and disadvantages. These are: Magnetic Resonance Imaging
(MRI), Ultrasound (US), Computed Tomography (CT), Nuclear Imaging, including Single Photon
Emission Computed Tomography (SPECT) and Position Emission Tomography (PET). Figure 1
shows the Block diagram of bone fracture system in X-Ray images.

Among the applications of segmentation in medical imaging we mention the anatomical
localization, whose main purpose is to describe anatomic regions of interest.

They may be also affected by noise, sampling artifacts or spatial aliasing so that the boundaries of
the regions of interest to become indistinct or disconnected. X-rays may have

various orientations, resolutions, or luminous intensities, depending on the X-ray equipment, that
could influence the quality of the segmentation result.

LLocation

Preproce Segment Fracture of

Tacture

ssing ation detection

Fig 1: Block diagram of bone fracture system

2. MEDICAL IMAGE SEGMENTATION TECHNIQUES

General medical image segmentation methods can be categorized into the following classes:
classical image segmentation methods (thresholding, regions-based, and edges-based), pattern
recognition-based, deformable models, wavelets-based methods, and atlas-based Techniques. To
exemplify some of the segmentation technique, we will consider a real X-ray image shown in
Figure 2.

Fig. 2 An X-ray image test.

3. Classical image segmentation methods

Classical methods include the following segmentation techniques: thresholding, region-based,
and edge-based methods.

3.1. Thresholding is one of the most simple segmentation techniques and involves thresholding
the image intensity. There are two classes of thresholding methods: global methods and adaptive
methods. In the case of global thresholding, only one threshold is selected for the entire image,
while in the case of adaptive thresholding, the local thresholds are selected independently for each
pixel (groups of pixels).The figure 3 shows an example of thresholding.

Figure 3. X-ray image segmentation using thresholding.

3.2. Global methods are based on the fact that the image has a bimodal histogram . The object of
interest can be separated from the background by comparing the intensity of each pixel in the
image with a threshold. Some pixels, whose intensity values are greater than the threshold, are
classified as being part of group A - object of interest (with an intensity value of 1), and the rest of
the pixels as being part of group B-background (with an intensity value of 0.

3.3. Adaptive methods are based on the fact that a given image is split into a series of sub-images
and, for each subimage, some thresholds are computed. A different approach, called local adaptive
thresholding, consists in analyzing the image intensities around each pixel and selecting an
individual threshold for each pixel, taking in consideration the degree of the] intensity values in
its local neighborhood.

3.4. Region-based methods have the purpose of grouping pixels having similar intensities. The
most important region-based segmentation algorithms are: region-growing segmentation, and
watershed algorithms.

3.5. Region-growing algorithm is a simple pixel-based image segmentation method, which
involves the selection of pixels (the seeds), and then growing regions around these seeds, using a
homogeneity criteria. If the joining pixels have similar image features as the seed, they are
integrated into the region.

3.6. Edge-based segmentation methods use edge detectors to find edges in the image. Edge
detection has an important role in image processing and computer vision, especially in feature
detection and extraction domain. Edges can be viewed as image points, where the luminous
intensity of the image changes distinctly along particular orientation. If the intensity of the images
has a strong change, then there is a high probability for an edge at that image position.

The classical operators for edge detection are the following: Prewitt, Sobel, Roberts and
Laplacian of Gaussian (LoG) operator. Most classical edge detectors are based on the local
gradient (the first order derivatives) of the image function. Practically, the difference between these
operators is that they use different types of filters for estimating the gradient components and a
different way for combining these components.

10

3.6.1. Prewitt operator is a discrete operator which estimates the gradient of the image intensity
function. It computes the approximations of the derivatives using two 3x3 kernels (masks), in
order to find the localized orientation of each pixel in an image. Prewitt differs from Sobel operator
only in the filters they use. Prewitt operator used the following filters:

-1 0 1
HY=/-1 0 1 (1)
-1 0 1
and
-1 -1 -1
H:=| 0 0 0. 2)
' 111

The local gradient components are obtained from the

filter by scaling:
(I= HE Hu.v
VIiu.v) = l { X)} (3)

6 | (I+H})(u.v)

3.6.2. Sobel operator computes the approximation of gradients along the horizontal (x) and the
vertical (y) directions (2D spatial) of the image intensity function, at each pixel, and highlights
regions corresponding to edges. Sobel edge detection is implemented using two 3x3 convolution
masks or kernels, one for horizontal direction, and the other for vertical direction in an image, that
approximate the derivative along the two directions. Sobel operator uses the following filters:

11

HS =|-2 (4)
-1 0 1
and
-1 -2 -1
Hy=| 0 0 0 (5)
1 2 1

The two filters are almost identical with the filters used
by Prewitt operator. excepting the weighting of the nuddle
row (for horizontal kernel) and column (for vertical kernel):
Sobel uses a weighting of 2 and -2. while Prewitt uses a
weighting of 1 and-1.

The local gradient components are computed as follows:

Vi(u.v) = L (1 Hy)(u.) (6)
R (1=H3)(u.v)

3.6.3. Laplacian of Gaussian operator computes the second-order derivatives of the intensity
function for a given image. The image is smoothed using a Gaussian smoothing filter, to reduce
its sensitivity to noise, and then the Laplacian filter is applied. The edges obtained using LoG
operator, have a more precise localization than the ones detected by applying Prewitt or Sobel

More advanced edge detectors have been proposed in the computer vision literature such as Harris
detector or Canny edge detector. Harris finds the edges based on the eigenvalues of the Hessian
matrix [2]. Canny is a very effective edge detecting technique. It detects faint edges, even when
the image is noisy, because it is used after a series of preprocessing procedures, such as edge
enhancement (Gaussian filtering). Next, the edge strength (magnitude) of the image must be found.
This procedure implies the approximation of the image gradient in the xdirection (Gx) and in the
in the y-direction (Gy), using Sobel operator. The gradient magnitudes are determined using the

formula:
G |=.[G? + G, (9)

The next step consists in finding the edge direction. as
shown in the following equation:

0 = arctag S, l (10)
o I'._.:_ G

x

12

3.7. Pattern recognition-based

Segmentation implies pixels classification, so it is frequently handled as a pattern recognition
issue. Pattern recognition techniques include unsupervised methods (clustering) and supervised
methods (classification) of Machine Learning.

Clustering or cluster analysis is an unsupervised method and refers to a class of algorithms
extensively used for image segmentation. It is a technique for grouping a set of objects into groups
(clusters), so that similar objects belong to the same cluster, while dissimilar object belong to
different clusters. Various clustering algorithms have been proposed in the literature. Between
them we mention: the K-means algorithm, hierarchical clustering or the Gaussian mixture
approach.

40 60 80 100 120 140

X

Figure 4. Formation of Clusters in K-Means Clustering

A particular algorithm that can be included in this category is the mean-shift algorithm which was
introduced and searches modes or local maxima of the density function in the features space,
defining the clusters. The next step is grouping data in these clusters. The two steps of the mean
shift algorithm are: the filtering step, in which the original image is filtered in the feature space,
and the clustering step, in which the filtered data points are grouped, using linkage clustering or
edge-directed clustering. In the filtering step, the probability density function (pdf) of the image is
analyzed in the feature space. The density function at point X is estimated using the next equation:
]

£(x) = — Z};|?| . an
i=1

nh?

with n being the number of points, xi(i =1,..,n) the pixels in the image, h the bandwidth, d the data
dimensionality, a constant, and K(-) the density estimation kernel. The iterations for the centroids
of clusters locations are evaluated as shown in figure 4.

13

Iteration 1 Iteration 2 Iteration 3
§ T L] x L] 8 T L] x L] 8 T - -
{=] y .. L] o o .. o .* .. -
=] .x:';‘.s * =] KRR SN . =7 .&r'.';".s y
- - L L] - L L] L] L]
A A LA A LA X aS L
- Ton o - - - Tan @ L8 5 - - Tae o . [
g . ot me . g ‘ "..o ' . - g ‘ "O.. x. ' . .
.~ - ' .~ - ' .~ .'
o | - o _| - o _| -
®° T T ——t « T T mm—— T « T T — T
0 10 1 20 0 10 15 20 25 0 10 1 20
X X X
Iteration 6 Iteration 9 Converged!
8 8 8
& - . o R) o - ...o . - o - ...o . -
2 .X- i . 2 2
- . .vo:;‘.‘o . - - .vo.l o ° - . .vo.l o
> 81 T T Y > B4 -)G..: * > 84 -~)G..: .
- "o. . . ™ - '.. . - '.. .
o ' * - o ' - o -
2 F o.x.\:o - 2 , x.o - 2 , X". .
o | L o _| 2
= T T T 2 .I : T «“ T T I : T T «“ T T I T
0 5 10 15 20 0 5 10 15 20 25 0 5 10 1 20
X X X

Fig 5. Iterations for Centroid estimation in K-Means Clustering

4. MATLAB IMPLEMENTATION FOR X-RAY BONE SEGMENTATION

General medical image segmentation methods can be categorized into the following classes:
thresholding, regions-based, and edges-based. To exemplify some of the segmentation technique,
we will consider a real X-ray image shown in Figure 2.

Image is read using the command :
| = imread('Abdul.jpg?);

Fig. 2 An X-ray iage test.

After that we converted the 3-D image to 2-D image by : “I=1(,:,1);”

14

[cx, ¢y, c] = improfile(l,xi, yi);

improfile retrieves the intensity values of pixels along a line or a multiline path in the grayscale,
binary, or RGB image in the current axes and displays a plot of the intensity values. If the specified
path consists of a single line segment, improfile creates a two-dimensional plot of intensity values
versus the distance along the line segment. If the path consists of two or more line
segments, improfile creates a three-dimensional plot of the intensity values versus their x- and y-
coordinates.

[cx,cy,c] = improfile(l,xi,yi,n) additionally returns the spatial coordinates of the pixels, cx and cy,
of length n.

Then we cropped the image upto an extent where we can detect the bones which we need to
segment with the help of the command :

12 = imcrop(l, [x1, yi(1), x2-x1, y2-yi(1)-4]);
e 12 = imcrop(l,rect) crops the image I. rect is a four-element position vector of the form
[xmin ymin width height] that specifies the size and position of the crop rectangle. imcrop

returns the cropped image, 12.

Fig. 3 Croppdimage.

The above theory of thresholding is applied by using “for-loop & if-else/break command ”

Edge-based segmentation methods use edge detectors to find edges in the image [2]. Edge
detection has an important role in image processing and computer vision, especially in feature
detection and extraction domain. Edges can be viewed as image points, where the luminous
intensity of the image changes distinctly along particular orientation. If the intensity of the images
has a strong change, then there is a high probability for an edge at that image position.

The classical operator used for edge detection is Sobel operator [2]. Sobel operator computes the
approximation of gradients along the horizontal (x) and the vertical (y) directions (2D spatial) of
the image intensity function, at each pixel, and highlights regions corresponding to edges. Sobel
edge detection is implemented using two 3x3 convolution masks or kernels, one for horizontal

15

https://in.mathworks.com/help/images/ref/imcrop.html#outputarg_I2
https://in.mathworks.com/help/images/ref/imcrop.html#inputarg_I
https://in.mathworks.com/help/images/ref/imcrop.html#inputarg_rect

direction, and the other for vertical direction in an image, that approximate the derivative along
the two directions.
Sobel operator is used by the following command:

[~, threshold] = edge(12, 'sobel’);

-1 0 1
H=|-2 0 2 (4)
-1 0 1
and
-1 -2 -1
HI=| 0 0 0], (5)
12

The two filters are almost identical with the filters used
by Prewitt operator. excepting the weighting of the middle
row (for horizontal kernel) and column (for vertical kernel):
Sobel uses a weighting of 2 and -2. while Prewitt uses a
weighting of 1 and-1.

The local gradient components are computed as follows:

1| (I*H3)(u,v) \
VI(u.v) = —- < _ (6)
8 | (I= H'}.)(u. V)

16

Now we use morphological operations on the image to remove noise by using different types of
structuring elements with the help of dilation and erosion methods required accordingly.

se90 = strel('line’, 2, 90);
se0 = strel('line’, 2, 0);
BWsdil = imdilate(BWs, [se90 seQ]);

SE = strel(’line',len,deg) creates a linear structuring element that is symmetric with respect to the
neighborhood center. deg specifies the angle (in degrees) of the line as measured in a
counterclockwise direction from the horizontal axis. len is approximately the distance between the
centers of the structuring element members at opposite ends of the line.

IM2 = imdilate(IM,SE) dilates the grayscale, binary, or packed binary image 1M, returning the
dilated image, IM2. The argument SE is a structuring element object, or array of structuring
element objects, returned by the strel.

Fig. 5 Dilated Irhage

Now the bone’s regions with boundaries are filled and extracted from the background using the
command :
bw = imfill(BWSsdil, 'holes);

BW2 = imfill(BW,'holes") fills holes in the input binary image BW. In this syntax, a hole is a set
of background pixels that cannot be reached by filling in the background from the edge of the
image.

17

https://in.mathworks.com/help/images/ref/imfill.html#outputarg_BW2
https://in.mathworks.com/help/images/ref/imfill.html#inputarg_BW

.. t
L 1

kool
Fig. 6 Binary image filled with holes

After using dilation and filling methods, we will now try to remove these small white dots noise
present with the help of the command :
bw2 = ~bwareaopen(~bw, 10);

BW2 = bwareaopen(BW,P) removes all connected components (objects) that have fewer than P
pixels from the binary image BW, producing another binary image, BW2.

Now we will calculate Euclidean distance from each pixel to a non-zero pixel.
D = -bwdist(~bw);

D = bwdist(BW) computes the Euclidean distance transform of the binary image BW. For each

pixel in BW, the distance transform assigns a number that is the distance between that pixel and
the nearest nonzero pixel of BW.

N R

ol L/

-

Fig. 7 Image after calculating the Euclidean distance transform

Now we apply watershed algorithm which is a type of region based thresholding. The direct

command for applying this algorithm is:
Ld = watershed(D);

18

https://in.mathworks.com/help/images/ref/bwareaopen.html#outputarg_BW2
https://in.mathworks.com/help/images/ref/bwareaopen.html#inputarg_BW
https://in.mathworks.com/help/images/ref/bwareaopen.html#inputarg_P

L = watershed(A) returns a label matrix L that identifies the watershed regions of the input matrix
A, which can have any dimension. The watershed transform finds "catchment basins" or
"watershed ridge lines" in an image by treating it as a surface where light pixels represent high
elevations and dark pixels represent low elevations.

Fig. 8 Image after applying Watershed

Now we apply the second type of region based thresholding called as region-growing algorithm

by using the command:
mask = imextendedmin(D,2);

BW = imextendedmin(l,h) computes the extended-minima transform, which is the regional
minima of the H-minima transform. Regional minima are connected components of pixels with a
constant intensity value, and whose external boundary pixels all have a higher value.

Fig. 9

After applying thresholding, we will impose them on one another by using the command:
D2 = imimposemin(D,mask);

19

https://in.mathworks.com/help/images/ref/watershed.html#outputarg_L
https://in.mathworks.com/help/images/ref/watershed.html#inputarg_A
https://in.mathworks.com/help/images/ref/imextendedmin.html#outputarg_BW
https://in.mathworks.com/help/images/ref/imextendedmin.html#inputarg_I
https://in.mathworks.com/help/images/ref/imextendedmin.html#inputarg_h

12 = imimposemin(1,BW) modifies the intensity image | using morphological reconstruction so it
only has regional minima wherever BW is nonzero. BW is a binary image the same size as I.

Fig. 10 Superimposed Image

Now again watershed algorithm is applied to clearly extract the bones and removes noise then we

use clear the borders of unwanted things or noise present with the help of the command :
BWnobord = imclearborder(BW(dfill, 4);

IM2 = imclearborder(IM) suppresses structures that are lighter than their surroundings and that are
connected to the image border. Use this function to clear the image border. IM can be a grayscale
or binary image.

Lo RS
Fig.11 watershed image

20

https://in.mathworks.com/help/images/ref/imclearborder.html?searchHighlight=imclearborder&s_tid=doc_srchtitle#outputarg_IM2
https://in.mathworks.com/help/images/ref/imclearborder.html?searchHighlight=imclearborder&s_tid=doc_srchtitle#inputarg_IM

Fig.12 cleared border image

Now again we need to use morphological operations so we use a modified command for erosion

and dilation which it follows the former one by using the command:
BWfinal = imopen(BWnobord, se);

The morphological “open” operation is an erosion followed by a dilation, using the same
structuring element for both operations.

Fig.13 Final segmented image

Last time we implemented different types of image segmentation methods on the X-ray leg bone images
and found out that if a fracture or any type of joint is present on the X-ray image then that many peaks will
be formed in the Hough transform plot diagram which is between the Max Hough transform and different

theta values [4].
21

Input X Ray Image

Input X Ray Image

Fig 14 X-ray Images of leg

First we used Canny edge detection using mathematical formulae which detected the edges of bones [5].
Edges of the bones

Edges of the bones

~.

Fig 15 Canny edge detected Images

After using some morphological operations and Hough transform, we finally got the peaks at different
theta values for the joints or fracture present in the X-ray image.[3]

Hough Detection Plot : Max Hough transform vs Theta

Hough Detection Plot : Max Hough transform vs Theta
150 T T T T T T T T T
X Max Hough Transform * Max Hough Transform
80 ﬂ(Hough Peak Threshold | | Hough Peak Threshold
[l X Detected Peak ‘ ‘ X Detected Peak
& I I »
£ it [e ‘ |
S ooy \ [§ 100 l
2 \ w B \ |
S 5ol | | s
2 50 [‘ e L
= | | = &g
g a0r ‘ [‘ an ‘ | |
T [| | . £ LR
3 30 \ | \ S 50 ARl
+ \ A N\ = L | |
= “ _/ ‘u‘ \ = LV
Ay I \[
20 | g i\ i i
e o \ ! \
N ‘,\\ % ; 7 y ’/ \
10 A s Vv v,
0 \ 0 \ . . \ \
-100 80 60 40 20 O 20 40 60 80 100 100 -80 60 40 -20 O 20 40 60 80 100

Theta Value

Theta Value

Fig 16 Hough transform plot

22

5. MATLAB IMPLEMENTATION FOR FRACTURE LOCATION

General medical image segmentation methods can be categorized into the following classes:
thresholding, regions-based, and edges-based. To exemplify some of the segmentation technique,
we will consider a real X-ray image shown in Figure 2.

Image is read using the command :
img = imread('leg_XRay.jpg");

Input X Ray Image

Input X Ray Image

Fig. 17 An X-ray image test.

We used image blur parameter to denoise the x ray image and minimum Hough peak distance
which is the Distance between peaks in Hough transform angle detection. All these parameters
will be initialized first.

5.1. GRAY SCALE CONVERSION

img_gray = (rgb2gray(img));

| = rgb2gray(RGB) converts the true colour image RGB to the grayscale intensity image I.
The rgb2gray function converts RGB images to grayscale by eliminating the hue and saturation
information while retaining the luminance.

23

http://in.mathworks.com/help/matlab/ref/rgb2gray.html#outputarg_I
http://in.mathworks.com/help/matlab/ref/rgb2gray.html#inputarg_RGB

Gray Scale X Ray Image Gray Scale X Ray Image

Fig.18 Denoising the RGB Image

img_filtered = imfilter(img_gray, fspecial(‘gaussian’, 10, ImgBlurSigma), 'symmetric’);

B = imfilter(A,h) filters the multidimensional array A with the multidimensional filter h. The
array A can be logical or a nonsparse numeric array of any class and dimension. The result B has
the same size and class as A.

imfilter computes each element of the output, B, using double-precision floating point. If A is an
integer or logical array, imfilter truncates output elements that exceed the range of the given type,
and rounds fractional values.

h = fspecial(type) creates a two-dimensional filter h of the specified type. Some of the filter types
have optional additional parameters, shown in the following syntaxes. fspecial returns h as a
correlation kernel, which is the appropriate form to use with imfilter.

denoised Gray Scale X Ray image

\

Fig 19. Gray scale Image

denoised Gray Scale X Ray image

5.2. Canny Edge Detection

Edges are considered to be most important image attributes that provide valuable information for
human image perception. Edge detection is a very complex process affected by deterioration due
to different level of noise . An edge is the boundary between an object and the background. Edge
detection is identifying points in a digital image at which the image brightness changes sharply or

24

http://in.mathworks.com/help/images/ref/imfilter.html#outputarg_B
http://in.mathworks.com/help/images/ref/imfilter.html#inputarg_A
http://in.mathworks.com/help/images/ref/imfilter.html#inputarg_h
https://in.mathworks.com/help/images/ref/fspecial.html#outputarg_h
https://in.mathworks.com/help/images/ref/fspecial.html#inputarg_type

more formally has discontinuities. The purpose of detecting sharp changes in image brightness is
to capture important events and changes in properties of the world .

Edge detection is used for identification of blurred frame broad classification among smooth

and rough surface classification of cement and asphalt. The Canny edge detection is performed on
the frames with the sensitive threshold values (upper threshold 10000 and lower threshold 4900)
and again it is performed with the insensitive threshold values (upper threshold 50000 and lower
threshold 9800). If a pixel has a gradient greater than the upper threshold, then it is an edge pixel.
If a pixel has a gradient lower than the lower threshold, it is not an edge pixel. If the pixel’s gradient
is between the upper and the lower thresholds, then it is considered as an edge, only if it is
connected to a pixel that is above the high threshold value as given in

Canny is one of modern edge detection method that founded by Marrdan Hildreth, who is doing
research in modeling human visual perception.

There are several criteria on edge detecting that can be fulfilled by Canny Edge Detection:

1. Canny has better detection (for detection criteria). Canny method capable to marks all existing
edges matching with user determined parameter’s threshold. Also giving high flexibility on
determining thickness level of edge detection according to the required conditions.

2. Canny has better localizing way (localize criteria). Canny capable on producing minimum gap
between detected edge and the real image edge.

3. Obvious response (response criteria). Only one response for every edge. This make less
confusion on edge detection for the next image. Choosing parameters on Canny Edge Detection
will giving effect on every result and edge detection. The parameters are :

a. Gaussian Deviation Standard Value.

b. Threshold Value.

The following is the steps to do Canny Edge Detection.[5]

1. Remove all noise on the image by implementing Gaussian Filter. The result is an image with
less blur. It is intended to obtain the real edges of the image. If we did not apply the Gaussian Filter
before, sometimes the noise itself will be detected as an edge.

2. Detect the edge with one of these detection operators, like Roberts, Perwit, or Sobel by do
horizontal searching (Gx) and vertical searching (Gy). The following is the sample of edge
detection operator (Sobel operators).

—1 o 1
H =|—2 o =2 4
—1 o 1

—1 —=z2 —1
HS — 0 O o . =)
1 = 1

The two filters are almost identical with the filters used
by Prewitt operator. excepting the weighting of the mmiddle
row {(for horizontal kernel) and coluainn (forr vertical kernel):
Sobel uses a weighting of 2 and -2, while Prewitt uisces @
welshting of 1 and-1 .

The local gcradient components are computed as follows:

I==FL3" o
I, v) ~ L [f Socua w)]
(L= FL3 Mu.~)

arnd

(6
= (5

The result from both operators combined to obtain the summary of vertical edge and horizontal
edge with this formula:

25

lG] = [Gx] + [Gy]

3. Determining direction of the edge by using the following formula:
G |=./G? +G? (@)
The next step consists i hinding the edge direction. as
shown in the following equation:
G, |
(10)
G

x

0= arcmg[

Canny Edge Detection [5] using two thresholds (maximum threshold and minimum threshold). If
pixel gradient higher than maximum threshold, pixel will be marked as an edge. If the pixel
gradient lower than minimum threshold, the pixel will be denied as background image. If the pixel
gradient between maximum threshold and minimum threshold, the pixel will be accepted as an
edge if it is connected with other edge pixel that higher than maximum threshold.

4. Minimize the emerging edge line by applying non maximum suppression. This process will give
slimmer edge line.

5. The last step is binarizing the image pixels by applying two threshold value.

e Do edge detection to find bone edges in image
e Filter out all but the two longest lines
e This feature may need to be changed if break is not in middle of bone

boneEdges = edge(img_filtered, ‘canny');

BW = edge(l,'Canny’) detect edges using the Canny method. The Canny method finds edges by
looking for local maxima of the gradient of I. The edge function calculates the gradient using the
derivative of a Gaussian filter. This method uses two thresholds to detect strong and weak edges,
including weak edges in the output if they are connected to strong edges. By using two thresholds,
the Canny method is less likely than the other methods to be fooled by noise, and more likely to
detect true weak edges.

The Canny method is not supported on a GPU.

26

http://in.mathworks.com/help/images/ref/edge.html#outputarg_BW
http://in.mathworks.com/help/images/ref/edge.html#inputarg_I

Edges of the bones

Edges of the bones

Fig 20. Canny edge detected image

5.3. Morphological Operations
Now we use morphological operations on the image to remove noise by using different types of
structuring elements with the help of dilation and erosion methods required accordingly.

se90 = strel('line’, 2, 90);
se0 = strel('line', 2, 0);
BWsdil = imdilate(BWSs, [se90 seQ]);

SE = strel(’'line',len,deg) creates a linear structuring element that is symmetric with respect to the
neighborhood center. deg specifies the angle (in degrees) of the line as measured in a
counterclockwise direction from the horizontal axis. len is approximately the distance between the
centers of the structuring element members at opposite ends of the line.

IM2 = imdilate(IM,SE) dilates the grayscale, binary, or packed binary image 1M, returning the
dilated image, IM2. The argument SE is a structuring element object, or array of structuring

element objects, returned by the strel.
BWfinal = imopen(BWnobord, se);

The morphological “open” operation is an erosion followed by a dilation, using the same
structuring element for both operations.

boneEdgesl = bwmorph(boneEdges, 'close’);

W2 = bwmorph(BW,operation) applies a specific morphological operation to the binary
image BW.Over here we are performing close operations

27

https://in.mathworks.com/help/images/ref/bwmorph.html#outputarg_BW2
https://in.mathworks.com/help/images/ref/bwmorph.html#inputarg_BW
https://in.mathworks.com/help/images/ref/bwmorph.html#inputarg_operation

Morphological operation on Edges of the bones Morphol

cal operati on Edge the bones

e
Fig 21. Image after morphological operation

edgeRegs = regionprops(boneEdgesl, 'Area’, 'PixelldxList’);
stats = regionprops(CC,properties) returns measurements for the set of properties specified
by properties for each connected component (object) in CC. CC is a structure returned

by bwconncomp.
ArealList = sort(vertcat(edgeRegs.Area), ‘'descend’);

B = sort(___,direction) returns sorted elements of A in the order specified by direction using any
of the previous syntaxes. 'ascend’ indicates ascending order (the default) and 'descend’ indicates
descending order.

edgeRegs(~ismember(vertcat(edgeRegs.Area), AreaList(1:2))) = [];
Lia = ismember(A,B) returns an array containing logical 1 (true) where the data in A is found in B.
Elsewhere, the array contains logical 0 (false).

edgelmg = zeros(size(img_filtered, 1), size(img_filtered,2));
X = zeros(sz) returns an array of zeros where size vector sz defines size(X)
edgelmg(vertcat(edgeRegs.PixelldxList)) = 1;

The above theory of thresholding is applied by using “for-loop & if-else/break command ”

5.4. HOUGH TRANSFORM

The Hough transform is a feature extraction technique used in image analysis, computer vision,
and digital image processing.[1] The purpose of the technique is to find imperfect instances of
objects within a certain class of shapes by a voting procedure. This voting procedure is carried out
in a parameter space, from which object candidates are obtained as local maxima in a so-called
accumulator space that is explicitly constructed by the algorithm for computing the Hough
transform.

The classical Hough transform was concerned with the identification of lines in the image, but
later the Hough transform has been extended to identifying positions of arbitrary shapes, most
commonly circles or ellipses.

28

https://in.mathworks.com/help/images/ref/regionprops.html#outputarg_stats
https://in.mathworks.com/help/images/ref/regionprops.html#inputarg_CC
https://in.mathworks.com/help/images/ref/regionprops.html#inputarg_properties
https://in.mathworks.com/help/matlab/ref/sort.html#outputarg_B
https://in.mathworks.com/help/matlab/ref/sort.html#inputarg_direction
https://in.mathworks.com/help/matlab/ref/ismember.html#outputarg_Lia
https://in.mathworks.com/help/matlab/ref/ismember.html#inputarg_A
https://in.mathworks.com/help/matlab/ref/ismember.html#inputarg_B
https://in.mathworks.com/help/matlab/ref/zeros.html#inputarg_sz
https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/Image_analysis
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Digital_image_processing
https://en.wikipedia.org/wiki/Hough_transform#cite_note-1
https://en.wikipedia.org/wiki/Parameter_space
https://en.wikipedia.org/wiki/Line_(mathematics)

el H(B.p)

_,"]\\ /’\)
p'.\' ha uﬁj> L T

3 . .“.‘\ XI: \7'!
< 0 B
’)

Image Domain Hough Domain

Fig 22. Graph of Hough domain resulted from a line

[H,T,R] = hough(edgelmg,' RhoResolution',1, Theta',-90:2:89.5);

[H,theta,rho] = hough(BW) computes the Standard Hough Transform (SHT) of the binary image BW.
The hough function is designed to detect lines. The function uses the parametric representation of
a line: rho = x*cos(theta) + y*sin(theta). The function returns rho, the distance from the origin to
the line along a vector perpendicular to the line, and theta, the angle in degrees between the x-axis
and this vector. The function also returns the Standard Hough Transform, H, which is a parameter

space matrix whose rows and columns correspond to rho and theta values respectively.
maxHough = max(H, [], 1);
It fetched the maximum values in every column.

HoughThresh = (max(maxHough) - min(maxHough))/2 + min(maxHough);
This is the Threshold value for the Maximum hough transforms.

[~, HoughPeaks] = findpeaks(maxHough, MINPEAKHEIGHT',HoughThresh, 'MinPeakDistance',
MinHoughPeakDistance);

pks = findpeaks(data) returns a vector with the local maxima (peaks) of the input signal vector, data.
A local peak is a data sample that is either larger than its two neighboring samples or is equal
to Inf. Non-Inf signal endpoints are excluded. If a peak is flat, the function returns only the point
with the lowest index.

29

https://in.mathworks.com/help/images/ref/hough.html#outputarg_H
https://in.mathworks.com/help/images/ref/hough.html#outputarg_theta
https://in.mathworks.com/help/images/ref/hough.html#outputarg_rho
https://in.mathworks.com/help/images/ref/hough.html#inputarg_BW
http://in.mathworks.com/help/signal/ref/findpeaks.html#bufbbs1-pks
http://in.mathworks.com/help/signal/ref/findpeaks.html#inputarg_data

Hough Detection Plot :

Max Hough transform vs Theta

Max Hough Transform
80 | Hough Peak Threshold |
X Detected Peak
70 T
-
% 60
&
= 50T T
e —
g) g .
3 40 J
™ § -
= IV
2 V\\/\/—’V \ I
10 Z W 1
O 1 1 1 1 1 1 1 1 1
-100 -80 -60 -40 -20 0 20 40 60 80 100
Theta Value
Fig 23. Hough transform v/s theta values
Hough Detection Plot : Max Hough transform vs Theta
150 T T T T T T T T T
T Max Hough Transform
Hough Peak Threshold
¥ Detected Peak
-
g 100 |
) o
o
- -
=
o
=)
o
e
5 sof)
= /’* /
A /V\/\/\
Vs \
O 1 1 1 1 1 1 1 1 1
-100 -80 -60 -40 -20 0 20 40 60 80 100
Theta Value

Fig 24. Hough transform v/s theta values

5.5. LOCATING SITE OF BREAK

General method to detect number of joints or fractures present in any image is by using function [4]:

Aa= numel(HoughPeaks); [6]
This is the number of joints.

30

n = numel(A) returns the number of elements, n, in array A, equivSalent to prod(size(A)).

With the help of this function, we can know the number of joints or fractures present in X-ray image. After
that we create a zero matrix of size of filtered image taken before as 300x200x2. We used 2 because there
are 2 joints present in the image given, Well there could be more than depending upon the input X Ray
images

BreakStack = zeros(size(img_filtered, 1), size(img_filtered, 2), numel(HoughPeaks));
We have created a zero matrix with the number of layers equal to the number of joints
X = zeros(szl,...,5zN)

It returns an sz1-by-...-by-szN array of zeros where sz1,...,szN indicate the size of each dimension. For
example, zeros(2,3) returns a 2-by-3 matrix.

5.6. CONVOLUTION OF EDGE IMAGE

Now we will be convolving edge image with line of detected angle from Hough transform using filter and
morphological operations.

boneKernel = strel('line', HoughConvolutionLength, T(HoughPeaks(m)));[6]

HoughConvolutionLength = 40; % Length of line to use to detect bone regions

A strel object represents a flat morphological structuring element, which is an essential part of
morphological dilation and erosion operations.

A flat structuring element is a binary valued neighborhood, either 2-D or multidimensional, in which the
true pixels are included in the morphological computation, and the false pixels are not. The center pixel of
the structuring element, called the origin, identifies the pixel in the image being processed. Use
the strel function (described below) to create a flat structuring element. You can use flat structuring
elements with both binary and grayscale images.

SE = strel(’line',len,deg) creates a linear structuring element that is symmetric with respect to the
neighborhood center. deg specifies the angle (in degrees) of the line as measured in a counterclockwise
direction from the horizontal axis. len is approximately the distance between the centers of the structuring
element members at opposite ends of the line.

kern = double(bwmorph(boneKernel.getnhood(), 'dilate’, HoughConvolutionDilate));
HoughConvolutionDilate = 2; Amount to dilate kernel for bone detection

BW?2 = bwmorph(BW,operation,n) applies the operation n times. n can be Inf, in which case the operation
is repeated until the image no longer changes.[6]

NHOOD = getnhood(SE) returns the neighborhood associated with the structuring element SE.
SE is a STREL object. NHOOD is a logical array.

double(s) converts the symbolic value s to double precision. Converting symbolic values to double precision
is useful when a MATLAB® function does not accept symbolic values.

31

https://in.mathworks.com/help/matlab/ref/numel.html#btl24wx-1-A
https://in.mathworks.com/help/images/ref/bwmorph.html#bui7adf-1-BW2
https://in.mathworks.com/help/images/ref/bwmorph.html#bui7adf-1-BW
https://in.mathworks.com/help/images/ref/bwmorph.html#bui7adf-1-operation
https://in.mathworks.com/help/images/ref/bwmorph.html#bui7adf-1-n
https://in.mathworks.com/help/symbolic/double.html#btlircf-s

BreakStack(:,:,m) = imfilter(edgelmg, kern).*edgelmg;

B = imfilter(A,h) filters the multidimensional array A with the multidimensional filter h. The array A can
be logical or a nonsparse numeric array of any class and dimension. The result B has the same size and
class as A.[1]

Here we convolved edgelmg which is first filtered with kern which is a double precision image with the
edgelmg only which gives clear view of joints present in the image. [1]

Fig 26 Filtered Images after Convolution

5.7. DIFFERENCE BETWEEN CONVOLUTION IMAGES

Now we will take difference between the convolution images generated above. Locations where these
images will cross zero (within tolerance) should be the position where break is. And after that we have to
filter out the regions elsewhere where the bone simply ends.[1]

32

https://in.mathworks.com/help/images/ref/imfilter.html#btsmcj2-1-B
https://in.mathworks.com/help/images/ref/imfilter.html#btsmcj2-1-A
https://in.mathworks.com/help/images/ref/imfilter.html#btsmcj2-1-h

brimg = abs(diff(BreakStack, 1, 3)) < BreakLineTolerance*max(BreakStack(:)) & edgelmg > 0;

Y = diff(X,n,dim) is the nth difference calculated along the dimension specified by dim. The dim input is a
positive integer scalar.

Y = abs(X) returns the absolute value of each element in array X.
[BpY, BpX] = find(abs(diff(BreakStack, 1, 3)) < BreakLineTolerance*max(BreakStack(:)) & edgelmg >

0);
BreakLineTolerance = 0.25; Tolerance for bone end detection

[row,col] = find(___) returns the row and column subscripts of each nonzero element in array X using any
of the input arguments.

brimg = bwmorph(brimg, 'dilate’, breakPointDilate);

breakPointDilate = 6; Amount to dilate detected bone end points

Now we will use morphological operation i.e. dilation on the image which is generated after taking
differences. This operation will help us to identify those points only where a joint is present in the image.

brReg = regionprops(brimg, 'Area’, 'MajorAxisLength’, 'MinorAxisLength’,
'Orientation’, 'Centroid");

Fig 27 Dilated Images of the Break Points

stats = regionprops(BW,properties) returns measurements for the set of properties specified
by properties for each 8-connected component (object) in the binary image, BW. stats is struct array
containing a struct for each object in the image. You can use regionprops on contiguous regions and
discontiguous regions [1]

brReg(vertcat(brReg.Area) ~= max(vertcat(brReg.Area))) = [];

C = vertcat(Al,...,AN) vertically concatenates arrays Al,...,AN. All arrays in the argument list must have
the same number of columns.

33

https://in.mathworks.com/help/matlab/ref/diff.html#btwmxq8-1-Y
https://in.mathworks.com/help/matlab/ref/diff.html#btwmxq8-1-X
https://in.mathworks.com/help/matlab/ref/diff.html#btwmxq8-1-n
https://in.mathworks.com/help/matlab/ref/diff.html#btwmxq8-1-dim
https://in.mathworks.com/help/matlab/ref/abs.html#bucsg6q-1-X
https://in.mathworks.com/help/matlab/ref/abs.html#budexws-4
https://in.mathworks.com/help/matlab/ref/find.html#budqulo-row
https://in.mathworks.com/help/matlab/ref/find.html#budqulo-col
https://in.mathworks.com/help/images/ref/regionprops.html#buoixjn-1-stats
https://in.mathworks.com/help/images/ref/regionprops.html#buoixjn-1-BW
https://in.mathworks.com/help/images/ref/regionprops.html#buoixjn-1-properties

This will help in finding the actual fracture in the X-ray image and not of joints present there. Now we will
try to locate this fracture in the image which can provide some sort of circle or anything else to highlight
the fracture present.[1]

5.8. CALCULATING AND DRAWING BOUNDING ELLIPSE

Now we will calculate coordinates of ellipse which will be used to encircle the fracture found above. And
that will show us the location of fracture present.

brReg.EllipseCoords = zeros(100, 2); [6]

here we created a zero matrix of size 100x2 in the Ellipse coordinates matrix and which will be filled with
the coordinates of fracture location.

t = linspace(0, 2*pi, 100);

y = linspace(x1,x2,n) generates n points. The spacing between the points is (x2-x1)/(n-1).

linspace is similar to the colon operator, “:”, but gives direct control over the number of points and always
includes the endpoints. “lin” in the name “linspace” refers to generating linearly spaced values as opposed
to the sibling function logspace, which generates logarithmically spaced values.

brReg.EllipseCoords(:,1) = brReg.Centroid(1) + brReg.MajorAxisLength/2*cos(t - brReg.Orientation);
brReg.EllipseCoords(:,2) = brReg.Centroid(2) + brReg.MinorAxisLength/2*sin(t - brReg.Orientation);

Now these both above formulae are the parametric form of ellipse equation whose centroid is shifted to
other coordinates so this forms the ellipse on the fracture as we have shifted the centroid to the fracture
centroid location. [4]

5.9. PLOTTING OF ELLIPSE
Now we will plot ellipse whose coordinates are calculated above and will highlight the location of bone
fracture present in X-ray image.

figure(7)
imshow(img)
hold on
colormap(‘gray")

colormap map sets the colormap for the current figure to one of the predefined colormaps. If you set the
colormap for the figure, then axes and charts in the figure use the same colormap. The new colormap is the
same length (number of colors) as the current colormap.

plot(brReg.EllipseCoords(:,1), brReg.EllipseCoords(:,2), 'r");[6]

plot(X,Y,LineSpec) sets the line style, marker symbol, and color.
plot(X,Y) creates a 2-D line plot of the data in Y versus the corresponding values in X.
If X and Y are both vectors, then they must have equal length. The plot function plots Y versus X.

34

https://in.mathworks.com/help/matlab/ref/linspace.html#bud27em-x1x2
https://in.mathworks.com/help/matlab/ref/linspace.html#bud27em-n
https://in.mathworks.com/help/matlab/ref/colormap.html#buc3wsn-1-map
https://in.mathworks.com/help/matlab/ref/plot.html#btzitot-X
https://in.mathworks.com/help/matlab/ref/plot.html#btzitot-Y
https://in.mathworks.com/help/matlab/ref/plot.html#btzitot-LineSpec
https://in.mathworks.com/help/matlab/ref/plot.html#btzitot-X
https://in.mathworks.com/help/matlab/ref/plot.html#btzitot-Y

Fig 28 Images showing location of fracture in X-rays

35

6. PERFORMANCE EVALUATION

Image Dataset . Of . Of Accuracy (in %

Xrayl.jpeg 3 3 100
Xray?2.jpeg 3 2 66.67
Xray3.jpeg 2 2 100
Xray4.jpeg 2 2 100
Xray5.jpeg 2 1 50
Xray6.jpeg 1 1 100
Xray7.jpeg 1 1 100

Table 1: Performance Evaluation

7. RESULT ANALYSIS

The performance analysis of the Fracture Detection is done using slandered measurement parameters of
True Positive Rate (TPR), False Positive Rate (FPR), Precision and Recall.

However recall is nothing but TPR and FPR is measure for Fall-out.

TPR =TP/(TP + FN)

FPR = FP/(FP + TN)

Precision = TP/(TP + FP)

Where TP, FP, TN & FN are defined in compliance with problem as:

* TP is number of Fractures in which it is detected when actually it is present

* FP is number of Fractures in which it is detected when actually it is not present

* TN is number of Fractures in which it is not detected when actually it is not present

36

* FN is number of Fractures in which it is not detected when actually it is present

7.1. TPR, FPR AND PRECISION CALCULATION

In our cases, We have calculated these values for the Fractured X-Rays as:

8.

VVVVVYYVYY

TP=58

FP=6

TN=31

FN=8
TPR(%)=58/(58+8)=87.88%
FPR(%)=6/(6+31)=16.21%
Precision=58/(58+6)=90.63%

CONCLUSION AND FUTURE SCOPE

>

VVVY VV V

In the end we would like to conclude that we have done with segmentation of the bones of the
interest in the X-Ray Images by applying certain algorithms like thresholding, morphological
operations etc. initially till the 7th semester.

Now we have completed fracture detection and their location in the X-Ray images by using Hough
Transforms and convolutions

We have tried on many X-Ray images as well getting the proper results for the fracture in the bones.
We have located the break site and created the bounding ellipse on that break site for the location
of fracture.

We are getting the precision of upto 93.33% on certain fracture datasets.

This precision could be increased with the Deep Learning Algorithms (CNN,RNN,etc)[4].

We are also writing a Research Paper based on this Project as It is quite an innovative research for
Bones segmentation and fracture Location

37

9. REFERENCES

>

[1] R.Aishwariya , M.Kalaiselvi Geetha , M.Archana, Computer- Aided Fracture Detection of X-
Ray Images. IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661, p-ISSN:
2278-8727 PP 44-51.

[2] Cristina STOLOJESCU-CRISAN, Stefan HOLBANA, Comparison of X-Ray Image
Segmentation Techniques. Advances in Electrical and Computer Engineering.

[3] Nathanael .E. Jacob, M.V. Wyawahare, Tibia Bone Segmentation in X-ray Images - A
Comparative Analysis. International Journal of Computer Applications (0975 — 8887).

[4] S.K.Mahendran and S.Santhosh Baboo, Automatic Fracture Detection Using Classifiers- A
Review 1JCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, November
2011 ISSN (Online): 1694-0814.

[5] SAMUEL FEBRIANTO KURNIAWAN, | KETUT GEDE DARMA PUTRAAA
KOMPIANG OKA SUDANA, BONE FRACTURE DETECTION USING OPENCYV, Journal of
Theoretical and Applied Information Technology, ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-
3195.

[6] www.mathworks.com

38

http://www.mathworks.com/

10. APPENDIX

A. Matlab code for the segmentation of Bones:
clc;
tic;
clear all;

55%%55%5%%%5%5%5%%%5%5%5%%%5%5%5%%%5%5%5%%%5%5%5%%%5%5%5%%%5%%
55%5%5%%55%5%5%5%%%5%5%%5%5%5%55%%5%5%55%%55%

%% X-ray image segmentation

I = imread('xrayl.jpg');

figure
imshow (I)

I =1I(:,:,1);
[yl x1] = size(I);
xi = [0, x171;
yi = [yl*0.60, y1*0.60];
[cx, cy, c] = improfile(I,xi, vyi):;
flagl = 1;
for i=1:x1
if c(i) > 60 && flagl
x1l = cx(1);
flagl = 0;

39

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

end
if c(i) < 20 && flagl ==

X2 = cx (1) ;
break;
end

end

xi = [0, x171;

yi2 = [y1*0.98, y1*0.98];

[cx, cy, c] = improfile(I,xi, vyiZ2);

flagl = 1;

up = 0;

down = 0;

for i=1:vyl

if c(i) < 130
y2 = cy(i);
break;

end

end

I2 = imcrop(I, [x1, yi(l), x2-x1, y2-yi(1l)-41);
figure (2);

imshow (I2)

title ('Cropped focused image');

[~, threshold] = edge(I2, 'sobel');

fudgeFactor = .5;

BWs = edge(I2, 'sobel', threshold * fudgeFactor);
figure (3)

imshow (BWs)

title('binary gradient mask');
imwrite (BWs, 'exp.jpg');

se90 = strel('line', 2, 90);

se0 = strel('line', 2, 0);
BWsdil = imdilate (BWs, [se90 se0]);
figure (4)

imshow (BWsdil)
title('dilated gradient mask');

sedisk = strel('disk', 4);
bw = imfill (BWsdil, 'holes');

bw2 = ~bwareaopen (~bw, 10);
imshow (bw2)
D = -bwdist (~bw);

imshow (D, [])

Ld = watershed (D) ;
imshow (label2rgb (Ld))
bw2 = bw;

bw2 (Ld == 0) = 0;

40

imshow (bw2)

mask = imextendedmin (D, 2);
imshowpair (bw,mask, 'blend")
D2 = imimposemin (D, mask) ;
Ld2 = watershed(D2);

bw3 = bw;

bw3 (Ld2 == 0) = 0;

imshow (bw3)

BWdfill = bw3;

figure (5)

imshow (BWdfill) ;

title('binary image with filled holes');
BWnobord = imclearborder (BWdfill, 4);
figure (6)

imshow (BWnobord)

title('cleared border image'):;

radius = 5;
decomposition = 0;
se = strel('disk', radius, decomposition);
BWfinal = imopen (BWnobord, se);
figure (7)
imshow (BWfinal)
title('final segmented image');

B. Matlab code for the Fracture of Bones:
clear all;
close all;
%$img = imread('http://i.stack.imgur.com/mHo7s.jpg") ;

$img = imread('frac3.Jjpg');
img = imread('leg XRay.Jjpg');
figure (1)

imshow (img) ;
title('Input X Ray Image');

%% Important parameters

ImgBlurSigma = 2; % Amount to denoise input image
MinHoughPeakDistance = 5; % Distance between peaks in Hough

transform angle detection

HoughConvolutionLength = 40; % Length of line to use to detect
bone regions

HoughConvolutionDilate = 2; % Amount to dilate kernel for bone
detection

BreakLineTolerance = 0.25; % Tolerance for bone end detection
breakPointDilate = 6; % Amount to dilate detected bone end
points

41

0000000000000000000000Q
V0000000000000 0000000T0D0

¢}

img gray = (rgb2gray(img)); % Load image

figure (2)

imshow (img gray) ;

title('Gray Scale X Ray Image');

img filtered = imfilter (img gray, fspecial('gaussian', 10,
ImgBlurSigma), 'symmetric'); % Denoise

figure (3)

imshow (img filtered);

title('denoised Gray Scale X Ray image');

o\

Do edge detection to find bone edges in image

% Filter out all but the two longest lines

This feature may need to be changed if break is not in middle
of bone

boneEdges = edge (img filtered, 'canny');

figure (4)

imshow (boneEdges) ;

title ('Edges of the bones');

o\

bonekEdgesl = bwmorph (boneEdges, 'close');

figure (5)

imshow (boneEdgesl) ;

title ('Morphological operation on Edges of the bones '");

edgeRegs = regionprops (bonekEdgesl, 'Area', 'PixelIdxList');
Arealist = sort(vertcat (edgeRegs.Area), 'descend');

edgeRegs (~ismember (vertcat (edgeRegs.Area), Arealist(l:2))) = [1;
edgeImg = zeros(size(img filtered, 1), size(img filtered,2));
edgeImg (vertcat (edgeRegs.PixelIdxList)) = 1;

% Do hough transform on edge image to find angles at which bone
pieces are

% found

% Use max value of Hough transform vs angle to find angles at
which lines

% are oriented. If there is more than one major angle
contribution there

% will be two peaks detected but only one peak if there is only
one major

% angle contribution (ie peaks here = number of located bones =
Number of

% breaks + 1)

[H, T,R] = hough(edgeImg, 'RhoResolution',1l, 'Theta',-90:2:89.5);
maxHough = max (H, [], 1);
HoughThresh = (max (maxHough) - min (maxHough)) /2 + min (maxHough) ;

42

[~, HoughPeaks] =

findpeaks (maxHough, '"MINPEAKHEIGHT', HoughThresh,
'MinPeakDistance', MinHoughPeakDistance);

% Plot Hough detection results

figure (6)

plot (T, maxHough) ;

hold on

plot ([min(T) max(T)], [HoughThresh, HoughThresh], 'g');

plot (T (HoughPeaks), maxHough (HoughPeaks), 'rx', 'MarkerSize',
12, 'LineWidth', 2);

hold off

xlabel ('Theta Value'); ylabel ('Max Hough Transform');

legend ({'Max Hough Transform', 'Hough Peak Threshold', 'Detected
Peak'});

title ("Hough Detection Plot : Max Hough transform vs Theta');

% Locate site of break
if numel (HoughPeaks) > 1;

BreakStack = zeros(size(img filtered, 1), size(img filtered,
2), numel (HoughPeaks))

% Convolute edge image with line of detected angle from
hough transform

for m = 1l:numel (HoughPeaks) ;

boneKernel = strel('line', HoughConvolutionLength,
T (HoughPeaks (m))) ;
kern = double (bwmorph (boneKernel.getnhood(), 'dilate',
HoughConvolutionDilate)) ;
BreakStack(:,:,m) = imfilter (edgeImg, kern).*edgelmg;
figure ()
imshow (BreakStack(:,:,m));

end
% Take difference between convolution images. Where this
crosses zero

Q

% (within tolerance) should be where the break is. Have to
filter out

[e)

% regions elsewhere where the bone simply ends.

brImg = abs (diff (BreakStack, 1, 3)) <

BreakLineTolerance*max (BreakStack(:)) & edgeImg > 0;
[BpY, BpX] = find(abs(diff (BreakStack, 1, 3)) <
BreakLineTolerance*max (BreakStack(:)) & edgeImg > 0);

43

brImg = bwmorph (brImg, 'dilate', breakPointDilate);
figure (9);
imshow (brImg) ;
brReg = regionprops (brImg, 'Area', 'MajorAxisLength',
'MinorAxisLength',
'Orientation’', 'Centroid');
brReg (vertcat (brReg.Area) ~= max (vertcat (brReg.Area))) =
% Calculate bounding ellipse
brReg.EllipseCoords = zeros (100, 2);
t = linspace (0, 2*pi, 100);

brReg.EllipseCoords(:,1) = brReg.Centroid(1l) +
brReg.MajorAxisLength/2*cos (t - brReg.Orientation);
brReg.EllipseCoords(:,2) = brReg.Centroid(2) +

brReg.MinorAxisLength/2*sin(t - brReg.Orientation);

else
brReg = []; %% No Fracture points are there

end
% Draw ellipse around break location
figure (10)
imshow (img)
hold on
colormap('gray')
if ~isempty (brReq)
plot (brReg.EllipseCoords(:,1), brReg.EllipseCoords(:,2),

44

[1;

C. Abbreviations and Algorithms Used:

Thresholding

Morphological Operations

K-Means Clustering

Prewitt and Sobel Operators

Hough Transform

Canny edge detection

Support Vector Machines(SVM)
Convolutional Neural Networks(CNN)
Recurrent Neural Networks(RNN)

45

